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Who Am 17

» B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)
» Background in graph/order theory, algorithms
» 2007-present: ANL

Specialized compiler OpenAD (http://www.mcs.anl.gov/OpenAD/)
implementing techniques of automatic (or algorithmic) differentiation

Primary application: MITgem (General Circulation Model)
(http://mitgcm.org/)


http://www.mcs.anl.gov/OpenAD/
http://mitgcm.org/

Motivation: Derivatives are Ubiquitous in Computational
Science and Engineering

Examples:
» Derivative-based optimization

» Numerical simulation (sensitivities)

Have code for F,

Want code to compute the value for F and its derivatives F’ (at some
argument)



A Very High-Level Overview of Computational Derivatives

Divided Differences

» Treat F as a black box

» involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

» Ignore code for F, treat as a collection of expressions (formulas)

» = produce formula for F' from formula for F



A Very High-Level Overview of Computational Derivatives

Divided Differences

» Treat F as a black box

» involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

» Ignore code for F, treat as a collection of expressions (formulas)

» = produce formula for F’ from formula for F

Automatic (Algorithmic) Differentiation

OpenAD traditional compiler .
» code for F "% code for F and F’ N P hachine code

» Considers the code for F as a circuit, appends to this a circuit for F’

» Yields exact derivatives



The OPTIMAL STRUCTURAL DERIVATIVE
ACCUMULATION Problem

straight-line code — G
Given any DAG G, find optimal way to evaluate
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The OPTIMAL STRUCTURAL DERIVATIVE
ACCUMULATION Problem

exponential number of terms — easy to evaluate by dynamic programming

Straight-line code (no branches) — is this a toy problem?



The OPTIMAL STRUCTURAL DERIVATIVE
ACCUMULATION Problem
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What can we hope to say about the complexity of 7(G)?
it includes matrix multiplication as a special case



Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (= monotone circuits)

Theorem (Jerrum/Snir 1982)

(k — 1)n® multiplications are necessary and sufficient to evaluate the
product AYA? ... Ak of k dense n x n matrices over (R, x,+,0,1).



Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (= monotone circuits)

Theorem (Jerrum/Snir 1982)

(k — 1)n® multiplications are necessary and sufficient to evaluate the
product AYA? ... Ak of k dense n x n matrices over (R, x,+,0,1).

For k = 2, the above is implied by the following stronger result.

Theorem ((many — Pratt, Paterson, Kerr, Melhorn) 1970's)

If Ais an ng x ni matrix and B is an n1 X ny matrix, then ngnins
multiplications and no(n1 — 1)ny additions are necessary and sufficient to
evaluate AB over any semiring of characteristic zero.



Why Compute Over a Semiring?

Some combination of the following:
» Numerical stability (no run-time checks)
» Seems natural
» Our purview is the structure of derivatives and the chain rule

» This structure should certainly have meaning in semirings
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Computational Model

The real semiring (R, x,+,0,1)

x and + are commutative, associative

x distributes over +

0 - additive identity/multiplicative annihilator

>
>

» 1 - multiplicative identity

>

» No additive inverses — no cancellations



Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X, positive constants from underlying field

Gates: Always indegree 2, of the following two types:
® gates : Compute the product of their children
@ gates : Compute the sum of their children



Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X, positive constants from underlying field

Gates: Always indegree 2, of the following two types:
® gates : Compute the product of their children
@ gates : Compute the sum of their children

Think of polynomials in terms of set of sets representation (monomials
and indeterminates)



Arithmetic Circuits Compute (Collections of) Polynomials
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Monotone Multilinear Circuits Have Nice Properties

Definition (multilinear polynomial over R[X])

linear in each indeterminate in X

Monotone circuits for multilinear polynomials are multilinear
(Nisan/Wigderson 1995)



Monotone Multilinear Circuits Have Nice Properties

Definition (multiplicatively disjoint circuit)

No indeterminate x has both o and (3 as an ancestor




Parse Trees

p
Definition (Jerrum/Snir1982)
A subcircuit T of ® is a parse tree of ® if it satisfies the following
conditions:
1. T contains the (unique) output of ®.
2. If T contains a sum gate o, then T contains exactly one of the
children of o.
3. If T contains a product gate p, then T contains both of the
children of p.
4. No proper subtree of T satisfies (i)-(iii).




Parse Trees
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Parse Trees

& X3 w J(G) = xox5 + xox3X4 + X1Xa




Parse Trees

& X3 w J(G) = xox5 + xox3Xa + X1X4




Parse Trees

& X3 w J(G) = xox5 + xox3Xa + X1X4




Parse Trees

& X3 w J(G) = xox5 + xox3X4 + X1Xa
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Tight Lower Bounds

7

Theorem
An optimal arithmetic circuit computing J(G) can be constructed in
polynomial time if G belongs to one of the following classes of DAGs.

» 3-homogeneous st-DAGs
» complete st-DAGs

» series-parallel st-DAGs




3-homogeneous st-DAGs
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3-homogeneous st-DAGs
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If G is a 3-homogeneous st-DAG, then

C. (J(G)) = [X?| +7(G?) .




3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G2, and assume WLOG that v{ € H
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Let H be a vertex cover of G2, and assume WLOG that v{ € H
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3-homogeneous st-DAGs: The Upper Bound
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3-homogeneous st-DAGs: The Lower Bound

Note 1-1 correspondence between monomials of J(G) and elements of
X2
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Consider the gates where indeterminates come together
A: (the “lower") gates — two indeterminates

T: (the “upper") gates — three indeterminates



3-homogeneous st-DAGs: The Lower Bound
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Lower Bounds via Reduction Rules

We consider local transformations

G— G

where we can relate the complexity of G to that of G’

In some cases, a sequence
G;) G’H"’H G(k_l) — G(k)

with k = O (JA(G)|) reduces the graph to a single edge.



Lower Bounds via Reduction Rules: Parallel Arcs

Lemma
C(J(G))=C(J(G") +1
C.(J(G))=C4 (J(G’ ) +1
Cx (J(6)) = Cx (J(G")
Proof.

(<): set X' =x1 + xo
(>): set x; =0 (removes at least one sum gate)



Lower Bounds via Reduction Rules: Key Lemma

Let (u,v) be an arc in A(G).

Lemma
If there is no alternative path from u to v in G,
then every parent of x,, € ® is a ®-gate

Proof.

Suppose a sum gate o has children x,, and (.

For every parse tree that includes x,, there is a corresponding parse tree
including (. Ol



Lower Bounds via Reduction Rules: Arcs in Series

O—x1—O—x—0 |::>O X O

Lemma
If v has exactly one inedge and exactly one outedge, then

C(J(G))=C(J(G")) +1
C. (J(G)) = +(J(G))
C« (J(G)) =Cx (J(G)) +1




Lower Bounds via Reduction Rules: Arcs in Series

O—x1 —B— 32 —0 |:“>O x'

Lemma
If v has exactly one inedge and exactly one outedge, then

C(J(G))=C(J(G")) +1
C. (J(G)) = +(J(G))
C« (J(G)) =Cx (J(G)) +1

Proof.
set X' = x1 X xo

set x; = 1 (remove at least one ®-gate)



Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition
A single isolated edge is a series-parallel st-DAG.
If Gi, Gy are series-parallel st-DAGs, then so is their. ..

series composition: identify the sink of Gy with the source of G,

parallel composition: identify the two sources, identify the two sinks
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Definition
A single isolated edge is a series-parallel st-DAG.
If Gi, Gy are series-parallel st-DAGs, then so is their. ..

series composition: identify the sink of G; with the source of G

parallel composition: identify the two sources, identify the two sinks

7

Theorem
The following are equivalent.

» G is a series-parallel st-DAG

» G can be reduced to a single edge by a sequence of series and
parallel reduction rule applications

» there is a circuit for J(G) that is tree structured (like a formula)

J




Lower Bounds via Reduction Rules: Complete st-DAGs

u 4 w u Vv w
X1 —=»O—Xx2—»0 |::> X1 —QO O
KX:;—/ KX/_/

-
Lemma
If v has exactly one inedge and there is no alternative path from v to
w, then

C(J(G)) = C(J(G)) +2
C4 (J(6)) = C (I(G) +1
C. (J(G)) = Cx (J(G") +1

Proof.

(<): set X' = x3+ (x1 X x2)

(>): set xo = 0 (removes at least one ®-gate and at least one
d-gate)

O



Lower Bounds via Reduction Rules: Complete st-DAGs




Lower Bounds via Reduction Rules: Comments

Optimality-preserving reduction rules should be applied whenever possible

We can turn any DAG into a homogeneous DAG by subdividing arcs
(series reduction rule)

All of our reduction rules run in polynomial time.

future work: could these rules (or similar) imply a polynomial-size kernel?
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Discussion of Results

What have we seen so far?

» homogeneous DAGs correspond to iterated sparse matrix
multiplication

» finding an optimal circuit for a 3-homogeneous st-DAG < bipartite
vertex cover

» Lower bounds via reduction rules for series-parallel and complete
st-DAGs

Progress towards to original problem (OPTIMAL STRUCTURAL
DERIVATIVE ACCUMULATION)?



Complexity of Circuit Minimization

The problem becomes NP-hard when some subset of the edges may be

labeled with the multiplicative unit “1".
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Computing Polynomial Functions over Different Semirings
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Computing Polynomial Functions over Different Semirings
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The Power of Constants

constant terms

(14 x3)(Xp + Xc) = Xb + Xc + XaXp + XaXc

this does not apply for homogeneous polynomials, and it also doesn’t
apply for “path polynomials”

Lemma
The parent of every constant input is a product gate.

Proof.
(Same as for edges with no alternative path.)

O



The Power of Constants: Monotone Multilinear Circuits
Without Constants are Even Nicer

scaling indeterminates by constants

X1 + axg + (1 — a)X2 + X3

why is it useful to have constant-free circuits?



The Power of Constants

R=(R,+,x,0,1) M= (RU{+oc}, min,+, +00,0)
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Theorem (Jerrum/Snir 1982)
If p is a multilinear polynomial, then

CM(p) = C*(p)
C{'(p) = CE(p)
C(p) = C%(p)




Optimal Circuits are Constant-Free

Conjecture

Let p be monic, multilinear.

If p is homogenous or p is the path polynomial of some st-DAG, then
every optimal arithmetic circuit computing p over (R, +, X) is
constant-free.

Proof.
If a monotone idempotent circuit computes a monic multilinear
polynomial, then we can remove the constants



The Power of Constants

R = (R,+,x,0,1), M*" = (R U{+oo}, min, 4, +o0,0)

7

Theorem (Jerrum/Snir 1982)

If p is a homogeneous multilinear polynomial, then

Note here we have absorption: min(a,a+ b) = a



The Power of Commutativity

( (R U {+o0}, min, +) )
 all-terminals shortest paths )
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L lex. strings (_ Jacobian accumulation )

~
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Jacoblan accumulation
(over 2 x 2 matrices)

\

Conjecture (Griewank/Naumann)
Commutativity has no power for evaluating J(G)

All our upper bounds use noncommutative circuits
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Thanks!

Questions?



